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1 Abstract

Several methods of incorporating multi-dimensional ideas into algorithms for the solution of

the Euler equations are presented and discussed. Three schemes are developed and tested;

a scheme based on a downwind distribution, a scheme based on a rotated Riemann solver

and a scheme based on a generalized Riemann solver. The schemes all show a marked

improvement over first-order, grid-aligned upwind schemes, but the higher-order performance

is less impressive. An outlook for the future of multi-dimensional upwind schemes is given.

2 Introduction

2.1 The 1D Euler Equations

The Euler equations of gasdynamics express the conser-ation of mass, momentum and energy

for a continuous, non-conducting inviscid fluid. In one dimension, they may be written

Ou Of (la)o---f+_=o,

where u is the 'state vector,' the vector of conserved quantities,

/ }u -- pu

pE

(lb)



and f is the 'flux vector,' given by

f pu 2 + p •

puho

(lc)

The ideal gas relation

and the definition of total enthalpy

(ld)

close the set of equations.

The primitive variable form of the equations may also be written in vector form, giving

0fi . 0fi

=0, (2a)

where fi is the vector of primitive variables

u= u

P

(2b)

and _ is the Jacobian matrix

u p 0

0 u 1
P

0 pc 2 U

(2c)

Travelling wave solutions to the one-dimensional Euler equations may be sought by sub-

stituting

fi(x,t)= fi(x- At) (3a)

into Equation 2a, giving the eigenvalue problem

(_ - )tI) _fi = 0, (3b)

where I is the three by three identity matrix, and 6fi is the amplitude of the traveling wave.

The solution of this problem depends upon the eigenvalues and eigenvectors of _ described
below.
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First Acoustic Wave

The eigenvalue
A = u - c (4a)

and corresponding right eigenvector

pc 2

(4b)

represent an acoustic disturbance. The wave travels with the fluid velocity minus the

speed of sound.

Entropy Wave

The eigenvalue
A = u (4c)

and corresponding eigenvector

_2 = 0 (4d)

0

represent a change in density with no corresponding change in pressure, and can be

thought of as an entropy wave. The wave travels with the fluid velocity, as can be seen

from the eigenvalue.

Second Acoustic Wave

The eigenvalue
)_ = u + c (4e)

and corresponding right eigenvector

pc 2

(4f)

also represent an acoustic disturbance. The wave travels with the fluid velocity plus

the speed of sound.

The "characteristic variables" are given by

dw : F-I_II (5a)
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= (5b)

Modern schemes for compressible flow are based on these travelling wave solutions to

the one-dimensional Euler equations. The Euler equations in their conservative form (Equa-

tion la) are integrated over cell number i, which extends from cell-face i - 1/2 to cell-face

i + 1/2. This gives

'+½ 0u 0f½ _- dx + J'-½ _ dx = 0 (60

Defining the cell-average state vector fi and applying Gauss' theorem gives

0fi
+ (f,÷,- =0 (6b)

where f|+1/2 = f(uL, UR) is a "numerical flux function," constructed so that the components

of dw for which A is positive (corresponding to a wave travelling in the positive x direction)

are backward differenced, and the components for which A is negative (corresponding to a

wave moving in the negative x direction) are forward differenced. In the above, UL and uR

are values of the state vector just to the left and right sides of the interface, respectively.

These can be taken to be equal to the nearest cell center values, yielding a first-order scheme,

or obtained by some interpolation of the cell-center values, yielding a higher-order scheme.

An outline of several of the flux functions currently in use has been given by Van Leer et

al [1].
The schemes outlined in this paper are primarily based on the flux function of Roe [2].

For this flux function, the "Roe-average" of the states fiL and flit is defined, with

(Z )-1;_ = lw+ 1 (1 w)
PR

fi = ULW+Un(1--w),

ho = h0Lw+h0n(1-w),

(7a)

(75)

(7c)

(Td)

where

The interface flux is then defined as

(7e)

1 1 3

f(uL, UR) = _ (fL + fit.) - _ _ ik[ AVk_k, (8)
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with _k, _k and AVk as given below:

Ill_1 = fi-_ ,

ho _fi

[1/_2 = fi ,

fi2
T

_3 [1)= fi+_ ;

n (ap- _e._xu))

(9a)

(9b)

(9c)

(lo)

)_1 = It -- C, (lla)

A2 = fi, (llb)

)_a = fi+_. (llc)

As with the quasilinear form, the _k's can be interpreted as waves of strength AVk, propa-

gating with speed Ak. Here, the subscript 1 denotes the first acoustic wave, the subscript 2

denotes the entropy wave and the subscript 3 the second acoustic wave.

2.2 The 2D Euler Equations

In two dimensions, the Euler cquations may be written as

0U OF 0G

Ot +-5_x + Oy
(12a)
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where U is the state vector,

P

pu
U ._. ,

p_

pE

and F and G are the flux vectors, given by

F

pu

pu 2 "4- p

puv

puho

G

pv
puv

pv + P
pvho

The ideal gas relation for the two-dimensional case is

_= [ u2+v_]
P (3'-1) E
p 2 "

The Euler equations may also be written in the quasilinear form

0o x0o
a--i-+ ay =0,

where Ai. and B are the Jacobian matrices

(12b)

(12c)

(12d)

(13a)

and

u p 0 0

0 u 0 !
p

0 0 u 0

0 pc _ 0 u

v 0 p

0 v 0

0 0 v

0 0 .pc 2

0

0

1
p

v

(13b)

(13c)



and U is the vector of primitive variables

P

It

0 = _ (13d)

_)

P

Travelling wave solutions to the two-dimensional Euler equations are of the form

0 (x,y,t) = U (xt¢_ + yt% - At) (14a)

where t¢ = tZ_ex + t_yey is a unit vector in the direction of propagation. Substituting this

form of solution into Equation 13a gives the eigenvalue problem

(Xt¢_ + gay - II) 50 = 0, (14b)

where I is the four by four identity matrix, and (fill is the amplitude of the traveling wave.

This deceptively simple-looking equation is much more complex than its one-dimensional

counterpart.

The matrix l_ is made up of the right eigenvectors of the matrix Aa_ + I_xy. The four

eigenvectors and their corresponding eigenvalues are as follows.

First Acoustic Wave

The eigenvalue

A = u_ + vKy - c (15a)

and corresponding right eigenvector

p

fh = I

I-c y
pc"

(15b)

Shear Wave

The eigenvalue

A - u_. + v_ u (15c)

represent an acoustic disturbance. The wave travels with the projected fluid velocity

minus the speed of sound.



and right eigenvector

fi2 =

0

--C_y

C_x

0

(15d)

represent a change in velocity direction, and can be thought of as a shear wave. The

wave travels with the projected fluid velocity.

Entropy Wave

The same eigenvalue

and its other right eigenvector

)t = u,¢_ + v,¢ v (15e)

0
1_3 = ' (15f)

0

represent an entropy wave. The wave travels with the projection of the fluid velocity

onto the direction vector t¢, as above.

Second Acoustic Wave

The eigenvalue

and right eigenvector

)_ = ut% + vtcy + c

P

I

1_,= , cl¢_ I (15h)

CKy

pc 2

represent an acoustic disturbance. The wave travels with the projected fluid velocity

plus the speed of sound.

The "characteristic variables" for a given value of (,%,,%) may be computed, giving

dw = R-l_fi (16a)



_._ _ __t_c

p p_

L_c + ucJJ

( 6b)

This, however, does not say anything about the choice of the direction vector _=(x=,xv).

Time-dependent and steady solutions of the Euler equations may include waves travelling in

particular directions. It is the way in which the direction vectors for these waves are chosen

that distinguishes the various wave-like models for the Euler equations.

Most modern schemes for the two-dimensional Euler equations are based on grid-contravariant

directions. The conservative Euler equations (Equation 12a) are integrated over a cell f/id,

with boundary O_ij. This gives

OUdA (0F 0G)/fa -_- +J_ + =0 (17a),,, ,,, •

The second integral is converted to a line integral over the cell boundary:

OU dA , - =/_,., _ + _on, , (Fdy Gdx) O.
(17b)

The first integral can be expressed in terms of the change in the average state 13" in the cell,

and the line integral becomes a sum over the faces (ss.y, four) of the cell:

AdfJ 4
dt + _(FAy- GAx)t = 0. (17c)

t---1

After introducing the cell-face length As,

As 2 = Ax 2 + Ay::, (17d)

Equation 17c can be written as

d_ 4

A dt + _ F_e}Ast :: O,
/=1

(17e)

where Fn is the flux normal to the cell face

Fn

pu_l_

pua.u + p cos Og

pu±v - psin Og

pu ±ho

9

(17f)



cos e9 = A_/ms,

sinO 9 = -Ax/As,

u± = ucosO 9 - vsin09,

ull = u sin 09 + v cos 09 .

Roe's flux-difference splitting consists of writing the interface flux as

F(UL, UR) = _ (FL +Flt) - _ =

where the eigenvectors are

(17g)

(17h)

(17i)

(17j)

(18)

1

fi - _ cos 09

fi - _ sin 09

ho - fi-_

0

- sin 09 ,

c°s09
Ull

(19a)

(19b)

1_3

fi

1

,3

1 ^2_(u + _,_)

(19c)

1_4

1

fi + ficos 09

fi + _ sin 09

ho + fi.fi

(19d)
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AV is given by

and the wave speeds are

For the two-dimensional case,

b

and ,b, fi and ]to are as before.

(Ap - fi_At_±)

AV = '°AUll

(Ap + _bg:Aua.}

; (20)

Aa = fi± -fi, (21a)

A2 = fi±, (21b)

A3 = fiz, (21c)

A4 = fi± +ft. (21d)

= vgw +VR(1 -w), (22a)

i 1 _2)], (22b)= (7- 11[ho- _(az +

2.3 Wave Models for the 2D Euler Equations

For a more general two-dimensional scheme, directions other than the grid-contravariant

directions should be chosen. The direction vector t_ (:an not be determined directly from

the equations of motion, however. In general, in multi-dimensional flow, information may

propagate in an infinite number of directions. Thus a dominant direction, or directions, must

be chosen for a discrete wave model, based on local flow values.

There are basically two approaches to determining the propagation directions:

1. an ad hoc choice of a dominant direction, or directions, based on physical considera-

tions;

2. using local flow gradients to "fit" a set of discrete waves to the residual, solving for tile

appropriate convection directions.

The first approach is by far the simpler of the two. In it, dominant directions arc chosen, and

the residual is interpreted as a sum of waves moving in these directions. This approach is

actually the one used in most current flow solvers, with the dominant directions taken to be

the grid contravariant directions. This is clearly not physical. If, for instance, a stationary

normal shock were to lie oblique to the grid, the difference between the pre- and post-shock

states would be interpreted as a combination of a compression and a shear, instead of just

ll
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Figure 1: Representation of a Shock Oblique to the Grid

as a compression (See Figure 1). If, however, the shock were studied in a frame normal to

it, there would be no element of shear seen in the difference between the two states (See
Figure 2).

Clearly, then, the choice of dominant direction can have an effect on the solution. But

what direction should be chosen? In the previous example, choosing the flow direction would

have given the proper behavior, since the shock was normal to the flow direction. This would

not be true for an oblique shock, however. For a non-curved oblique shock, directions that

would give the proper behavior include:

• the pressure gradient direction;

• the density gradient direction;

• the entropy gradient direction.

Another direction of interest is the velocity difference direction,

u R -- u L

v R -- v L

= - UL)+ - (23b)

In this direction, the difference in the two states (OR, I[IL) may be interpreted (based on

the velocities) as either a shock aligned normal to the velocity difference direction, or a shear

aligned parallel to the velocity difference direction (See Figure 2). Not until the difference in

pressure between the two states is taken into account can it be determined whether a shock

(large pressure difference) or a shear (zero or small pressure change) exists.

The second approach is more intricate, and has led thus far to two methods of calculating

propagation directions. The first method is based on decomposition of local gradients, and

is due to Roe [3]. The second method is based on an approximate diagonalization of the

Euler equations, and is due to Hirsch et al [4] and Deconinck et al [5].
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Figure 2: Velocity Difference Direction

In the first method, an a priori model for the number and type of waves is made, and

then angles, strengths and speeds of the waves are determined from local data. The example

carried out here will consisit of four acoustic waves, a shear wave and an entropy wave. The

acoustic waves are taken to have unknown strengths al, a2, a3 and or4, and orientations 0,

0 + 7r/2, 0 + _r, and 0+ 3_r/2, respectively. The entropy wave is taken to have strength _, and

orientation ¢. The shear is represented by a uniform vorticity w (See Figure 3). This model

gives eight unknowns (a_, at2, Or3, ot4,_, W, 0, _). The eight equations come from expressing

the components of the local gradients of density, velocities and pressure in terms of these

waves. The entropy wave, for example, contributes

Bl_l (cos ¢_x + sir_¢6r) (24a)

to the local gradient VIA. The first acoustic wave contributes

cqKz (cos 06,, + sin 0_r) (24b)

where

xu = sinO.

The other acoustic-wave contributions are calculated similarly. The contribution of the

vorticity is

0

-½w_y

_Wfix

O.

(2@)
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Figure 3: Roe's Wave Decomposition

Summing the contributions of these waves gives the system of equations

_1 cos 0 + _2 cos 0 - a3 sin 0 - a4 sin 0 =

al sin 0 + er2 sin 0 - a3 cos 0 - a4 cos 0 =

a_ cos 2 0 - a2 cos 2 0 + eta sin _ 0 - cq sin 2 0 -

oq sin 0 cos 0 - a2 sin O cos O- a3 sin 0 cos 0 + cq sin 6 cos 0 - w
2c

a_ sin 0 cos 0 - a2 sin 0 cos 0 - as sin 0 cos 0 + a4 sin 0 cos 0 +
6g

m

2c

cq sin 2 0 - a2 sin 2 8 + c_3cos 2 0 - a4 cos 2 0 -

cq cos 0 + a2 cos 0 - or3 sin 0 - oq sin 0 + 3 cos ¢_ -

al sin 0 + a2 sin 0 + a3 cos 0 + a4 cos 0 + 3 cos ¢ =

10p

1 au

c Ox

1 au

10v

c Ox

10v

c Oy

pox

p ay

This system can be solved for the strengths and angles of the waves, giving

3cos¢ - p _x1 ( Op c2 _xlOP )

3sine- .o N c2_'y

14

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

(25h)

(26a)

(265)

(26c)



_-_ - 2c _+_+

_-_ - 2c _+N- _+ oy]

l(Op Op 1al+a2 = _ cos0+ sin0
pc_ _ N j

+ oy] + _ N

+

(26d)

2] (26e)

2] (26f)

(26g)

1 (0p_yp Op '_aa + a4 -- cos 0 - sin 0 ] . (26h)
pc 2 -_z /

Thus a scheme based on this model would, at each iteration, calculate the derviatives VO,

and use the above formulas to solve for the unknowns al, a2, aa, a4,fl, w, 0, and _. Practical

schemes based on this composition have yet to be developed, but work towards this end

has been done by Roe [3], Deconinck [6] and Kr6ner [71. This is an eight-wave model,

decomposing the difference between two states into eight separate waves. The flux in a

standard grid-aligned Roe scheme is based on a four wave model.

In the second method, an approximate diagonalization of the Euler equations is sought.

It is of the form

0W* _ 0W* 0W* _ S (27a)
0"--_ + Dx"_x + I)y Oy '

where W* is a vector of convected quantities (entropy, a component of velocity, and two

acoustic-like variables), Dx and Dy are diagonal matrices of convection speeds, and S is a

source term. In this approach, two _-vectors are chosen in such a way as to minimize the

components of the source term S. They are _0) for the velocity-component convection and

_(2) for the acoustic-like convection. With the two _; vectors,

-_; (_). Au --

dW* =

Ap -

n (2). Au -

; (27b)
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D X

Dy

I¢_2)c 0 0 0U

0 u 0 0

0 0 u 0

0 0 0 u+ t¢(_2)c

v-_(3)c 0 0 0

0 v 0 0

0 0 v 0

0 0 0 v+x_(2)c

(27c)

(27d)

(_(2) 8 _(2) 8 _, •-c_% _-% _)W_

-i (4_)_- 4')_)(w; +w;)
S=

0

t" (2) o _ t¢(2) •-_ _ _)w_
The right eigenvector matrix P* for the transformation

d'q7* = P*dU

is given, in columns, by

i

(27e)

(28)

p.(,) =

T_
2e

2c_(1) .to(') " -

P (hot¢(1). _(:) _ t¢(1))2ct_(') .to(_) cu •

(29a)

0

p_(2)

_¢(1) ._(_)

p_)

- _(_) ._(_)

_(1) ._(_)

(_9b)
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1
u I

I
I

1.)

I

2 j

(29c)

.2_
2c

2_(_) .1¢0)

e (vt¢(') t; (=) + ct¢ (1))2,_(_) ._(_)

(29d)

P (h0t¢0) • t¢c_) + cu. t¢ (1))2_s¢(') .1¢(_)

These equations are general, holding for any choices of t¢ (_) and toO). Hirsch et al [4]

show that, in order to minimize the source terms, one needs a to(') that is aligned locally

with the pressure gradient, and a I¢(') that is related to the strain-rate tensor. That is, I¢(')

is given by

t;(') - Vp (30a)
IVpl

and t¢(=) is computed from the velocity derivatives in the following way: if

_x + _yy) -40-_x_y -< 0 (30b)

then the propagation angle
Ov Ou

tan 0 - 0-7 +
2 _

Ox

is calculated; otherwise, the possible propagation angles are given by

(3oc)

tan0 = _ + _ -4- (_ + 0v) -0_ov (30d)

The value of t¢ (') is then

t¢ (=) = cos 0_x + sin 0_y. (30e)

The proper branch for Equation 30d is the one that maximizes the inner product t¢ (1) • t¢ (_).

This decomposition, a.s the standard grid-aligned Roe scheme, decomposes the residual

using a four-wave model.
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Figure 4:24 × 8 Grid

2.4 Test Case for Multi=Dimensional Schemes

Three different schemes based on the above two-dimensional concepts are outlined in the

following sections. The first is a scheme based on a downwind distribution. This scheme

follows from ideas of Roe [3], and has been derived and implemented by Powell and Van

Leer [8]. Schemes based on similar ideas have been developed by Struijs and Deconinck

[9], Hirsch and Lacor [10] and Giles et al [11]. The second is a scheme based on a rotated

Riemann solver. This idea, which is an extension of Jameson's work for potential flow [12],

was first put forward by Davis [13], and has been further studied by Levy et al [14]. The

third scheme is based on a generalized Riemann solver. The results of the three schemes

are compared to those of a standard "grid-aligned" scheme based on Roe's approximate

Riemann solver. The test-case is a reflected shock problem; an incoming Mach number of

2.9 with a turning of 10 ° in a 3 x 1 channel. The case was run on two grids: a 24 x 8 grid and

a 96 x 32 grid. The grids on which the cases were run, and the baseline results for first- and

second-order grid-aligned schemes are shown in Figures 4-13. All cases were run without

flux-limiting. In Sections 3-5, the three methods tested are discussed in detail.

3 A Scheme Based on Downwind Distribution

3.1 A Scheme for the 2D Convection Equation

The heart of the first method, a downwind distribution scheme for the Euler equations, is a

cell-vertex scheme for the two-dimensional convection equation

Ou Ou Ou

0--'7+ c_o---x + C_yy = 0. (31)
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This scheme is analyzed below. On a uniform Cartesian grid, the residual for the convection

equation is given by

Ou

Resi+½5+½ - Ot (32a)

-- AxCX (ILi+I'J+½ -- ui'j+½) -- _yCy (Ui+_,j+ 1 -- ui+½j ) , (32b)

where the semi-integer index denotes a average over a cell-face, i.e.

:I
[_+ ' " u dx , (32c)

ui+_J -- Ax ,,_i,j

l
/_"_+' u dy . (32d)

_q'_+_ - Ay,_.,

These cell-face averages may be approximated using trapezoidal integration, giving the

second-o,'der appi oximation

ui,j + u,+lj (32c)
ui+½ J = 2 '

Ui'J "_ lt"J+l (32f)
u_.j+½ = 2

Using these formulas for the cell-face averages, the [burier footprint of the flux integration

for a cell is

.7-(AfRos) = -2i uassin-_cos-_ + %sin cos , (33a)
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where the/3's are the Fourier variables and the v's are the Courant numbers

c_At

v_ - Ax (33b)

%At (33c)
vv = Ay

To update the nodes, the cell-centered residual, given in Equation 32b, multiplied by At,

will be sent to the nodes (i,j), (i + 1,j), (i + 1,j + 1) and (i,j + 1) with weights ws_, ws_,

w,,_, and wn_, respectively (see Figure 14). The Fourier footprint of this distribution step is

given by

.T(Dist)= [ (w'*+w'')c°s_3":+fl-----_+(w'_'_+w'*)c°s3_-13-----------_u]2 2

+i [(w,,. - w,,.) sin -- 2 2
(33d)

If a simple forward-Euler time-stepping scheme is used, the net amplification factor for

the entire scheme is

6'(v_,vy,_:,flu) = 1 + 9_ (AtRes) gr (Dist) (33e)

The appropriate values for the w's remain to be determined from the stability analysis.

Since they correspond to convection directions, they should be determined by enforcing

stability for the long waves (fl_,/3y _ 0).

Taking the limit of Equation 33e as/3x, flu --* 0 yields the constraint

k_(.xfl. + _) = (_,. - ._.o) --/3_ + flu + (w.,.- w_) fix -flu (34a)
2 2 '
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wherek is some real constant. An added constrMnt (conservation) is that the entire residual

must be distributed,

w_ + w,_ + w_ + _.,_ = 1. (34b)

Also, by symmetry, if the u, and uu are such that convection is directly towards one node,

all of the residual is distributed to that node, i.e.

w,,=l if v,=v_>0; (34c)

w,_o=l if v,=vy<0; (34d)

w,,_,=l if -v,= v_>0; (34e)

ws_-I if -v,=%<0. (34f)

Combining these conditions gives the distribution coefficients

(v_ + u_,) ) (35a)w,.,_ = max O,]u_,+uu]+]u__uu[

w,_ = max O, ]u_, 4 _"_[ + [_ - u_,l (35b)

( ) (35c)w,_ = max 0, iv __,:[_i_:v_ ]

(v_-v_) ) (35d)w_ = max O, iv.,'+vv I+lv *-vy I .

These formulas state that the residual is sent only to the nodes that define the downwind

face, and is distributed in a weighted manner betweer_ the two nodes on that face. For a plane

wave moving in one of the coordinate directions, the two downwind weights are equal, and

the scheme reduces to the standard one-dimensional upwind scheme. The stability constraint

of the scheme is

2 2 < 1. (36)Vx _ /2y __

The locus of the scheme (i.e. the Fourier footprint of F(AtRes)F(Dist)) is shown for

0 °, 20 ° and 45 ° convection in Figures 15-17. The plots are generated by varying fl_ and flu

discretely, which leads to a mesh of points within the continuous footprint of the locus. The

circular stability boundary of forward-Euler time-stepping is circumscribed about the loci

for reference. The loci arc very different from those o( first-order upwind or central-difference

schemes. It is the wave that is convected at 45 ° thai. is damped the best, while waves at 0 °

(or 90 ° ) are not damped well. This can be seen clearly in the contours of the amplification

factor for the scheme, shown in Figures 18-20.

Some numerical results for a convected Gaussian on a 32 × 32 grid are given in Figures 21-

23. The convection directions are 0 °, 20 ° and 45 °. In each case the Gaussian propagates

across the grid virtually undistorted. The onset of a zebra instability can be seen in the

0 ° case, as predicted in the stability analysis. The amplitude of oscillations in this case is

very small (on the order of 10-4). The convergence history for each of the cases is shown in
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Figure 16: Fourier Footprint of Scheme -- 20 ° wave
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Figures 24 26. The Gaussia.n convects at almost one call per iteration, so that the slope of the

residual curve changes drasl, ically after approximately forty iterations. The 45 ° case, which

has the best high-frequency damping, converges very quickly, while the 0 ° case converges

very slowly.

The convergence characte.ristics of this scheme can be changed by an interesting variation

in the way in which the downwind distribution step is implemented. In tile above scheme,

the residual for a. cell was ,:alodated, and split into (ontributions for each node of the cell.

That is, a fraction w,_ was distributed to the northeast node, a fraction w,,,,, to the northwest

node, and so on. A wl.ria.t.i,m of this is not to split lie residual a.t all, lint to distribute the

entire residual to one. nod_', using the c0's as probabilit ies. That is, the residual is distributed

to the nort,heasl, node with prohability co_, to the n,:,ll.hwest node with probability w_ .... and

so on. This scheme gives t.hc same steady-state solutions as the residual-splitting scheme,

but the convergence characteristics of the 0 ° and 20 ° schemes arc' substantially differont.

(Figures 27 and 28). The d5 ° case is not affected by '.he "random distribution" me.thod.

Apparently the randonmess of the distribution step helps kill high-frequency waves, l low-

ever, in the early parts of the convergence history, dlis method can actually increase l.he

residual (Figllre. 27). The ]wst scheme is probably a i yhrid of the rvsitlual-split method and

the "randorll distribution" method.

3.2 Scheme for the Euler Equations

.lust as in the scheme for t.he convection equation, the scheme for the Eulcr equations is

made u t) of two primary steps:

1. a residual calcula.tion based on a flux integral;

2. a residual distribution.
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Each of these steps is somewhat more complicated for the system, however.

For the Euler equations, the residual for a cell is given by

1 _o [Fd._j-Gdx]Resi+_,j+½ = -_ A " (37)

where A is the cell area and the integral is taken along the cell's boundary OA. The cells

are now quadrilaterals, with faces lying along curvilinear coordinate lines _ = _¢i and r/= r/j.

The boundary integral of Equation 37 is composed of contributions of fluxes normal to

cell faces. To cxtcnd the approximation of Equations 32e and 32f so that they apply to

the above residual, it is necessary to convert these to flux approximations. Equation 32f,

for instance, when multiplied by cxAy, becomes an expression for the total flux across the

cell-face centered at (i,j + 1/2):

CxUi'j + Cxl_i'j+l Ay. (38)
c_:ui6+{ Ay = 2

With regard to the Euler equations, this translates directly into

^ Fi,j + " " Gi,j + Gi,j+l A,x, (39a)Fi'J+} L'XT/ : 2F''z+l A'y - 2

in which the following notation is used:

A,x = xi,j+l - .r_,j (39b)

A,TY = Yi,j+l -- Yi,j (39c)

AT] _--- _j+l -- 71j (39d)
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The quantity F denotesthe flux normal to a cell-face,scaledsuch that

_'drI = Fdy - Gdx.

The analog of Equation 32e is

Fij + Gij + Gi+_,j A_x(_i+½jA_ = 2Fi+IJA_y - 2

with

(39e)

(40a)

with

and

with

At

(_&+½,s+_= -2- (c.a.y - c_a.x),+_,s+½ ,

(A,x)i+_,s+½

(A,Y)_+½,S+½

1
-- : (xi,j+l - zi,j + Z_+l,S+_- xi+l,s)

2

__ 1 (y_,j+__ Y_,i+ Yi+_J+__ y_+,j),
2

At

(un)i+½'J+½ = -A (%A_.y - %A_x)i+½,j+½ ,

1

_- -_ (Xi+l,j -- Xl, j "iV XiTl,j+ 1 -- Xi,+lj)

_ 1 (Yi+l,j - Yi,j + Yi+l,j+l - Yi,j+l) •
2

(42b)

(42c)

Resi+½,j+½

5 wT(k)
t _u.--I ---1

t-t-_,3-V _

The distribution step requires, in each cell, projection of the residual onto the columns

of the matrix P', giving weights r (k), and multiplication of each of the resulting vectors by

an appropriate time-step:

4

k= 1 i+ 2 'j+ 2

=
34

(43a)

, (43b)

(41a)

(41b)

(41c)

(42a)

and

Gd_ = Fdy - Gdx. (40e)

Since, in all but the simplest cases, the grid cells are not Cartesian, the Cartesian Courant

numbers, v_ and vy must be replaced with "contravariant Courant numbers." The contravari-

ant Courant numbers v_ and un are related to the wave speeds normal to the cell faces. They

are given by the formulas

A¢x = xi+l,j - xi,j (40b)

A(y = Yi+Lj - Yi,j (40c)

A_ = _i+, - _i (40d)
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Figure 29: Downwind Distribution Scheme -- 24 x 8 Grid

where k varies from one to four. In the above, p*(H denotes the k th column of P*, corre-

sponding to the k th wave. and (StU(H is the portion of time change in the state vector caused

by the k th wave. Each 6tU (k) may be divided between the two vertices of the downwind

cell-face, according to t]l(. weights of Equations 35a-35d, with v,_ and vu replaced by v_ H and

v (k), e.g.

max 0, i. k)+ + k)- "?)1

The wave speeds c(_k) and c(uk) arising in the calculation of v_ k) and v_ k) are the diagonal

elements of D_ and Dr, given in Section 2.

Results for this scheme are shown in Figures 29-32. The checkerboard instability permit-

ted by tile scheme can be seen in the odd-even deco_lpling that takes place upstream of the

first shock. It was necessary to damp this mode wil,h a nonlinear artificial viscosity of the

type developed by Jameson et al [15]. To avoid ran(t,)na directions _c(') and _¢(_) in regions of

small velocity and pressu re gradients, both were taken to be along the flow direction in these

regions. Despite this, the _ vectors are quite noisy, as can be seen in Figures 33 and 34. The

overall results for this scheme are disappointing, in that they are almost indistinguishable

from the results for second-order grid-aligned upwinding.

4

In the second method, tl:e pressure gradient angle 0:,, given by

Op/ O,/
0, = tan -10pl& '

35

A Scheme Based on a Rotated Riemann Problem

(45a)
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Figure 34: Downwind Distribution Scheme -- x(2) Vectors

is used to construct the dominant-direction angle. To avoid random angles in areas with small

pressure gradients, the dominant-direction angle used is a blend of the pressure gradient angle

with the flow angle, 0,. The blending is accomplished by

cos0 =, cos 0p+ (1 - ,) cos0,
_vl_l_ + (1 - _)l._a

(45b)

where a typical value is e = 0.9.

The generic fomula for a flux normal to a cell face is

F = F (UL, UR); (46)

in a conventional first-order-scheme the left and right input states simply are the average

values in the adjacent cells. Convection speeds are based on velocity components parallel

and perpendicular to the cell face; the dominant direction, i.e., the direction in which the

Riemann problem is solved, is normal to the cell face•

When a dominant direction is chosen that is not normal to the cell face, the flux compo-

nent in this direction is

F± = F± (UL±,UR±). (47)

This flux is computed as before, with two changes. The velocity components are now in the

new reference frame (that is, the angle 0_ is replaced with the dominant-direction angle, 0),

and the left and right states are interpolated from the values in the nearest cell centers, as

shown in Figure 35. The subscript _1_is chosen to indicate that the direction, although not

normal to a cell face, may be normal to another important line, such as a shock front. For

higher-order interpolation, a second "outer" ring of cells is also used, as shown in Figure 36.
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Figure 37: First-Order Scheme with Rotated Riemann Solver -- 24 × 8 Grid

Next, a flux normal to this dominant direction,

FI[ = (ULII, URII ) , (48)

must be calculated; the input states (ULII, URII) for this flux are also found by interpolation.

Note that this flux component also exists in the conventional formulation, but does not
contribute to the flux through the cell face.

The flux normal to the cell face is constructed by rotating the above fluxes back to the
coordinate frame normal to the cell face:

F (UL.t, URx , ULII, URu ) = COS (0 -- 0g) F.I_ - sin (0 - 0g) FII. (49)

Here, 0 is the dominant-direction angle and 0g is the angle of the normal to the cell face (the
"grid angle").

Because of the necessity of both a "parallel" and a "perpendicular" flux function, this

scheme corresponds to using an eight-wave model for the fluid interaction at each interface.

Results for the flrst-order scheme are shown in Figures 37-40. Results for the second-

order scheme are shown in Figures 41-44. Comparison with the results of the grid-aligned

scheme (Figures 6-13) shows a substantial improvement for the first-order scheme, but a less

noticeable improvement for the second-order scheme. The dominant-direction vectors are

shown in Figure 45. Away from the shocks, the angle is in the flow direction. In the vicinity
of the shocks, it is normal to tile shocks.
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Figure 42: Second-Order Scheme with Rotated Riemann Solver -- 24 × 8 Grid
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Figure 43: Second-Order Scheme with Rotated Riemann Solver -- 96 x 32 Grid
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Figure 44: Second-Order Scheme with Rotated Riemann Solver -- 96 x 32 Grid
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5 A Scheme Based on a Generalized Riemann Solver

The third scheme is based on the velocity-difference direction

0 = tan -1

Depending on the relatiw; magnitudes of the pressure difference and velocity difference, the

difference between the two states I:IL and I]R is broken down into different combinations of

waves:

• if

two acoustic waves and one entropy wave all running in the 0-direction;

• if

_Xp< _/(Au) _ + (Ao)_,

one acoustic wave and one entropy wave running in the 0-direction, plus one shear

wave running in the direction 0 + rr/2.

The idea behind this approach can be seen graphically in Figure 46. The axes in the

figure are the velocity differences Au and Av, and the pressure difference Ap. The left

state, I]L, is at the origin. For a right state I]R inside the cone, such as l[rRx, the pressure

difference is dominant, and the difference between l:rL and lift is described as two acoustic

waves (the entropy wave, corresponding to a difference in density between the two states, is

not shown in the figure). For a right state OR outstde the cone, such as I]R 2 or I]R3, the

difference between the left and right states is described by one acoustic wave and one shear

wave. The shear waves show up as lines in the (Au, Av) plane (no pressure difference); the

acoustic waves show up as lines parallel to the rays generating the cone.

In practice the scheme has to be slightly elaborated, because nonlinear feedback makes

it necessary to "freeze" the angle 0 over many interations. If the latest frozen value is 01,

an additional weak shear wave connects OR to the l:,lane representing the 01-direction. This
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shearwave movesin the 01 direction; its graphical representation is a line segment in the

direction 01 + 7r/2, connecting the 0-plane in the figure to the "frozen" 01 plane.

The first step of the scheme is to determine which set of waves to use. In the case

< iAu) 2+(Av)2c°s(O-01) , (51a)

one acoustic wave, two shear waves and one entropy wave are used. In the sub-case

Apcos (0 - 01) < 0 (51b)

an acoustic wave of the first type is used; in the sub-case

Apcos (0-01) _> 0 (51c)

an acoustic wave of the second type is used. In the case

I
_c 2 >-,c__(Au)'+(Av)2c°s(O-O,),, (51d)

two acoustic waves, a shear wave and an entropy wave are used.

The interface fluxes are then calculated as for Roe's scheme, with

1 1 4

F(UL, UR) = _ (FL + Fit) - _ _ [Ak[ AVkRk, (52)

with the definitions of the wave parameters depending on which model is used.

For the case of two acoustic waves, a shear wave and an entropy wave, the eigenvectors
are given by

1_2 =

1

fi - fi cos Ol

- fisin 01

h_o- fi (fi cos Oa + fi sin 01 )

( 0

- sin 01

COS 01

(fi cos 01 - fi sin 01 )

(53a)

(53b)

fi

1 _,_)7 (fi2 +
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+ ficos01
1_4=

_3+ _sin 0t

(Sad)

/_o + _3(9 cos 01 + i, sin 01)

The wave strengths for this case are given by

A¼ -

A¼

and the wave speeds by

1

&/(_u/2 + (_)2 sin(0 - 011

Ap- _Ap

2¢321(Ap + /_fi_(Au) 2 + (Av)2 cos (0 -- 01))

A, = (ficos01+_3sin0a-i')cos(0a-Og)

i:: = (acos0, +_sin0,)co_(0, -0g)

A:, = (ficos0, + _3sin0,) cos(0, - 0g)

i 4 = ('_COS01+ _,sin O, + i!)cos(0, -Og)

(54a)

(54b)

(54c)

(54d)

(55a)

(55_)

(55c)

(55d)

In these speeds,where 0g is the "grid angle," i.e. the angle of the normal to the interface.

the projection onto the interface normal has been taken into account.
For the case of an acoustic wave of the first type, two shear waves and an entropy wave,

the vectors are given by

1

fi - _ cos 0-_

,3 - fi sin 01

/_o - c (fi cos 01 + b sin 01)

(56a)

0

- sin 0l

COS 01

(_ cos 01- _ sin 0,)
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(' 1

I
(a2 + 32)

(56c)

0

-- COS 01l_=
- sin 01

- (_) sin 01 + fi cos 01)

The wave strengths for this case are given by

AV1 Ap
_2

AV2 = _¢(Au) _ + (Av)2sin(O-O,)

AV3

AV4

and the wave speeds by

= Ap - _-_2Ap

--

(56d)

(57a)

(57b)

(57c)

(57d)

_, = (_cos0, + v sin 01- _) cos (0 x -0g) (58a)

_2 = (ficos0, + _)sin 01) cos (0, - 0g) (58b)

_3 = (ficos0a + _sin0a)cos(01-0g) (5Sc)

_4 = (fisin01 - 6cos0x)sin(0, -0g). (58d)

For the case of an acoustic wave of the second type, two shear waves and an entropy

wave, the vectors are given by

0

-- COS 01

- sin 01

- (_5sin 01 + fi cos 01 )

(59a)
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0

- sin 01

COS 01

(_ cos 0a - _t sin 01 )

(59b)

1

_(_+ )

(59c)

1_4 =

1

fi + fi cos 01

+ fi sin 01

/_0 + c (fi cos 01 + _)sin 01)

The wave strengths for this case are given by

AV_ - : Ap-
C

AV3 = Ap-_Ap

Ap
Av4 -

_2

and the wave speeds by

cos(0 - 01))

(59d)

(60a)

(60b)

(60c)

(60,1)

As in the standard grid-aligned scheme, the diffelence between two states is described in

terms of four waves. In this scheme, however, the choice of waves depends on the relative

magnitudes of the pressure difference and velocity difference betw_n the states.
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.X_ = O_sinO,-_,cosOx)sin(O,-O_) (61a)

_: = (_ cosO1-4-_siIl01)cos(01-09) (61b)

_:_ = (ficos014-bsin0,) cos (01- 09) (61c)

_,, : (,_cos01+,_sinO, 4-_)cos(O,-0_). (61d)
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Figure 47: First-Order Scheme with Generalized Riemann Solver -- 24 × 8 Grid

Results for this scheme are shown in Figures 47-50. They show a substantial improvement

over the first-order grid-aligned results (Figures 6-9), and a slight improvement over the

second-order grid-aligned results (Figures 6-9).

Further development of the generalized Riemann solver must be aimed at making it

more robust, without giving up its resolving power. A promising approach, currently being

investigated, is to "anchor" the wave decomposition to the frame of the local flow direction;

this is accomplished by simply taking 0a equal to the flow angle. For normal, or almost

normal, shocks, the results remain grid-independent; for more oblique shocks, resolution is

lost because the flow direction is not a good indicator of the shock normal, and some weight

should be given to the velocity-difference direction. This can be done by explaining part

of the jump between UL and UR by the generalized Riemann solver based on the velocity-

difference direction, and the remainder by the generalized Riemann solver based on the

streamwise direction. The fllll flux calculation then involved seven waves.

6 An Outlook for Multi-Dimensional Upwind Schemes

The outlook for genuinely multi-dimensional upwind schemes is still clouded. For the re-

flected shock cases presented here, all schemes tested showed improvements over first-order

grid-aligned schemes, but the improvements over second-order grid-aligned were very slight.

It is not clear whether this result is a condemnation of multi-dimensional schemes, or a con-

firmation of grid-aligned schemes. The improvements over grid-aligned upwinding do come

at a cost of complexity and convergence.

The downwind distribution scheme fundamentally differs from the other two schemes

presented here: it is a cell-vertex scheme. This implies better accuracy on stretched meshes,

and a simpler extension to unstructured meshes than for the cell-centered schemes. Ilowever,
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Figure 48: First-Order Scheme with Generalized Riemann Solver -- 24 x 8 Grid
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Figure 49: First-Order Scheme with Generalized Riemann Solver -- 96 × 32 Grid
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this scheme is also the least diffusive of the three, and the only one requiring additional

damping to reach a converged steady state. There are also some difficulties associated with

propagation directions that lie along grid lines. The random-distribution method presented

here might alleviate these problems, but it relies on the fact that the cell-centered residuals,

and not just the changes at the nodes, are zero when the steady state is reached. This may

not be generally true; non-zero cell residuals could add up, in the distribution step, to give

zero changes at the nodes. If this is the case, the random distribution scheme might not lead

to convergence, or to the proper steady state.

The scheme based on a rotated Riemann solver is the most robust of the three schemes.

Its cost, however, is fairly high. At each interface, almost twice the work of a grid-aligned

Ricmann solver is necessary to calculate the fluxes. Furthermore, the interpolation of the

state vectors has an associated cost, both in computational work and in added storage. In

three dimensions, the added storage could be prohibitive. The interpolation technique would

be cumbersome on an unstructured grid.

The scheme based on a generalized Riemann solver seems, at this point in time, the most

promising of the three approaches. The computational work for the scheme as outlined is

only slightly more than that of a grid-aligned scheme. The nonlinearity added by basing

the scheme on an angle calculated from local flow variables is detrimental to convergence,

but ways to get around this are being developed. In one approach, a portion of the differ-

ence between the left and right states (approximately one-half) is decomposed according to

the generalized Riemann solver, and the remainder is decomposed according to a stream-

aligned Riemann solver. This approach, however, adds to the cost of the flux computation,

approximately doubling it.

Clearly, the simple shock-reflection problem used in this paper cannot truly test these

multi-dimensional schemes. More sophisticated problems, particularly ones in which shear
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layers lie oblique to the grid, must be studied. Also, the possible range of schemes based on

multi-dimensional ideas has not nearly been covered yet. For a topic in which research has

begun only recently, though, the results are promising.
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